8 research outputs found

    Studying neuroanatomy using MRI

    Get PDF
    The study of neuroanatomy using imaging enables key insights into how our brains function, are shaped by genes and environment, and change with development, aging, and disease. Developments in MRI acquisition, image processing, and data modelling have been key to these advances. However, MRI provides an indirect measurement of the biological signals we aim to investigate. Thus, artifacts and key questions of correct interpretation can confound the readouts provided by anatomical MRI. In this review we provide an overview of the methods for measuring macro- and mesoscopic structure and inferring microstructural properties; we also describe key artefacts and confounds that can lead to incorrect conclusions. Ultimately, we believe that, though methods need to improve and caution is required in its interpretation, structural MRI continues to have great promise in furthering our understanding of how the brain works

    Studying neuroanatomy using MRI

    Full text link

    Predicting the location of human perirhinal cortex, Brodmann's area 35, from MRI. Neuroimage 64, 32–42.De Toleto-Morrell

    No full text
    The perirhinal cortex (Brodmann's area 35) is a multimodal area that is important for normal memory function. Specifically, perirhinal cortex is involved in the detection of novel objects and manifests neurofibrillary tangles in Alzheimer's disease very early in disease progression. We scanned ex vivo brain hemispheres at standard resolution (1 mm × 1 mm × 1 mm) to construct pial/white matter surfaces in FreeSurfer and scanned again at high resolution (120 μm × 120 μm × 120 μm) to determine cortical architectural boundaries. After labeling perirhinal area 35 in the high resolution images, we mapped the high resolution labels to the surface models to localize area 35 in fourteen cases. We validated the area boundaries determined using histological Nissl staining. To test the accuracy of the probabilistic mapping, we measured the Hausdorff distance between the predicted and true labels and found that the median Hausdorff distance was 4.0 mm for the left hemispheres (n = 7) and 3.2 mm for the right hemispheres (n = 7) across subjects. To show the utility of perirhinal localization, we mapped our labels to a subset of the Alzheimer's Disease Neuroimaging Initiative dataset and found decreased cortical thickness measures in mild cognitive impairment and Alzheimer's disease compared to controls in the predicted perirhinal area 35. Our ex vivo probabilistic mapping of the perirhinal cortex provides histologically validated, automated and accurate labeling of architectonic regions in the medial temporal lobe, and facilitates the analysis of atrophic changes in a large dataset for earlier detection and diagnosis. © 2012 Elsevier Inc. All rights reserved. Introduction The perirhinal cortex (Brodmann's area 35) is a multimodal cortical area that is located in the medial temporal lobe (MTL). A multimodal area receives input from more than one cortical association area and it is a region where information from different modalities converge Brodmann described the perirhinal cortex as a "transition between archipallium and neopallium&quot

    Table_2_Perinatal HIV Infection or Exposure Is Associated With Low N-Acetylaspartate and Glutamate in Basal Ganglia at Age 9 but Not 7 Years.DOCX

    No full text
    <p>Abnormalities of the basal ganglia are frequently seen in HIV-infected (HIV+) children despite antiretroviral treatment (ART) initiation during childhood. Assessment of metabolites associated with neuronal integrity or with glial proliferation can present a sensitive description of metabolic events underlying basal ganglia structural changes. We used magnetic resonance spectroscopy to examine differences in creatine, choline, N-acetylaspartate (NAA), glutamate, and myo-inositol between HIV+ children and HIV-unexposed controls, as well as between HIV-exposed uninfected (HEU) children and HIV-unexposed controls at age 7 and at age 9. No differences in metabolites relative to the HIV-unexposed control group were found at age 7. However, at 9 years, both HIV+ and HEU had lower NAA and glutamate than unexposed control children. HEU children also had lower creatine and choline than control children. At age 7, lower CD4/CD8 ratio at enrollment was associated with lower choline levels. At age 9 lower CD4/CD8 at enrollment was associated with lower myo-inositol. Low NAA and glutamate at age 9, but not 7, suggest that basal ganglia neurons may be particularly affected by perinatal HIV/ART and that neuronal damage may be ongoing despite early ART and viral suppression. Reduced basal ganglia metabolite levels in HEU children suggest an effect of HIV exposure on childhood brain development that merits further investigation using neuroimaging and neurocognitive testing.</p
    corecore